3.701 \(\int \frac{\sqrt{c+d x}}{\sqrt{a+b x}} \, dx\)

Optimal. Leaf size=72 \[ \frac{(b c-a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{b^{3/2} \sqrt{d}}+\frac{\sqrt{a+b x} \sqrt{c+d x}}{b} \]

[Out]

(Sqrt[a + b*x]*Sqrt[c + d*x])/b + ((b*c - a*d)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(b^(3
/2)*Sqrt[d])

________________________________________________________________________________________

Rubi [A]  time = 0.0376084, antiderivative size = 72, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {50, 63, 217, 206} \[ \frac{(b c-a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{b^{3/2} \sqrt{d}}+\frac{\sqrt{a+b x} \sqrt{c+d x}}{b} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x]/Sqrt[a + b*x],x]

[Out]

(Sqrt[a + b*x]*Sqrt[c + d*x])/b + ((b*c - a*d)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(b^(3
/2)*Sqrt[d])

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d x}}{\sqrt{a+b x}} \, dx &=\frac{\sqrt{a+b x} \sqrt{c+d x}}{b}+\frac{(b c-a d) \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx}{2 b}\\ &=\frac{\sqrt{a+b x} \sqrt{c+d x}}{b}+\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )}{b^2}\\ &=\frac{\sqrt{a+b x} \sqrt{c+d x}}{b}+\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{b^2}\\ &=\frac{\sqrt{a+b x} \sqrt{c+d x}}{b}+\frac{(b c-a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{b^{3/2} \sqrt{d}}\\ \end{align*}

Mathematica [A]  time = 0.101402, size = 117, normalized size = 1.62 \[ \frac{\sqrt{c+d x} \left (\sqrt{d} \sqrt{a+b x} \sqrt{\frac{b (c+d x)}{b c-a d}}+\sqrt{b c-a d} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b c-a d}}\right )\right )}{b \sqrt{d} \sqrt{\frac{b (c+d x)}{b c-a d}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x]/Sqrt[a + b*x],x]

[Out]

(Sqrt[c + d*x]*(Sqrt[d]*Sqrt[a + b*x]*Sqrt[(b*(c + d*x))/(b*c - a*d)] + Sqrt[b*c - a*d]*ArcSinh[(Sqrt[d]*Sqrt[
a + b*x])/Sqrt[b*c - a*d]]))/(b*Sqrt[d]*Sqrt[(b*(c + d*x))/(b*c - a*d)])

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 107, normalized size = 1.5 \begin{align*}{\frac{1}{b}\sqrt{bx+a}\sqrt{dx+c}}-{\frac{ad-bc}{2\,b}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\ln \left ({ \left ({\frac{ad}{2}}+{\frac{bc}{2}}+bdx \right ){\frac{1}{\sqrt{bd}}}}+\sqrt{d{x}^{2}b+ \left ( ad+bc \right ) x+ac} \right ){\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{dx+c}}}{\frac{1}{\sqrt{bd}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(1/2)/(b*x+a)^(1/2),x)

[Out]

(b*x+a)^(1/2)*(d*x+c)^(1/2)/b-1/2*(a*d-b*c)/b*((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2)/(b*x+a)^(1/2)*ln((1/2*a*d+
1/2*b*c+b*d*x)/(b*d)^(1/2)+(d*x^2*b+(a*d+b*c)*x+a*c)^(1/2))/(b*d)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)/(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.16635, size = 558, normalized size = 7.75 \begin{align*} \left [\frac{4 \, \sqrt{b x + a} \sqrt{d x + c} b d -{\left (b c - a d\right )} \sqrt{b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} - 4 \,{\left (2 \, b d x + b c + a d\right )} \sqrt{b d} \sqrt{b x + a} \sqrt{d x + c} + 8 \,{\left (b^{2} c d + a b d^{2}\right )} x\right )}{4 \, b^{2} d}, \frac{2 \, \sqrt{b x + a} \sqrt{d x + c} b d -{\left (b c - a d\right )} \sqrt{-b d} \arctan \left (\frac{{\left (2 \, b d x + b c + a d\right )} \sqrt{-b d} \sqrt{b x + a} \sqrt{d x + c}}{2 \,{\left (b^{2} d^{2} x^{2} + a b c d +{\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right )}{2 \, b^{2} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)/(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*sqrt(b*x + a)*sqrt(d*x + c)*b*d - (b*c - a*d)*sqrt(b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*
d^2 - 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x))/(b^2*d), 1/2*(
2*sqrt(b*x + a)*sqrt(d*x + c)*b*d - (b*c - a*d)*sqrt(-b*d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*
x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)))/(b^2*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d x}}{\sqrt{a + b x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(1/2)/(b*x+a)**(1/2),x)

[Out]

Integral(sqrt(c + d*x)/sqrt(a + b*x), x)

________________________________________________________________________________________

Giac [A]  time = 2.78602, size = 126, normalized size = 1.75 \begin{align*} -\frac{{\left (\frac{{\left (b^{2} c - a b d\right )} \log \left ({\left | -\sqrt{b d} \sqrt{b x + a} + \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt{b d}} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \sqrt{b x + a}\right )}{\left | b \right |}}{b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)/(b*x+a)^(1/2),x, algorithm="giac")

[Out]

-((b^2*c - a*b*d)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/sqrt(b*d) - sqrt(b^
2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a))*abs(b)/b^3